Nanofluids for Heat Transfer – Potential and Engineering Strategies

نویسنده

  • Elena V. Timofeeva
چکیده

In an age of increasing heat fluxes and power loads in applications as diverse as power electronics, renewable energy, transportation, and medical equipment, liquid cooling systems are necessary to enhance heat dissipation, improve energy efficiency, and lengthen device lifetime. To satisfy these increasing thermal management needs, the heat transfer efficiency of conventional fluids must be improved. Nanofluids are nanotechnology-based heat transfer fluids that are engineered by stably dispersing nanometer-sized solid particles (such as ceramics, metals, alloys, semiconductors, nanotubes, and composite particles) in conventional heat transfer fluids (such as water, ethylene glycol, oil, and mixtures) at relatively low particle volume concentrations. Nanofluids have been considered for applications as advanced heat transfer fluids for almost two decades, since they have better suspension stability compared to micron-sized solid particles, can flow smoothly without clogging the system, and provide enhanced thermal and physical properties. Nanofluids are in essence nanocomposite materials, with adjustable parameters including, but not limited to nanoparticle material, size, and shape, base fluid, surfactants and other additives. The thermal conductivity of heat transfer fluid is widely recognized as a main factor influencing the heat transfer efficiency. Low thermal conductivity of conventional fluids (i.e. 0.1-0.6 W/mK at 25oC) improves when solid particles with significantly higher thermal conductivity values (i.e. 10-430 W/mK for pure elements) are added. Therefore addition of small solid particles to liquids improves thermal conductivity of suspension, while still allowing for convection heat transfer mechanism of the fluid. The magnitudes of the effects reported in the literature are scattered from few percent (as predicted by effective medium theory (EMT) [1-3]) to hundred percents per nanoparticle volume concentration (i.e. abnormal enhancements [4-6]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Heat Transfer Coefficients Investigation for TiO2 Based Nanofluids

From a regression analysis perspective, this paper focused on literature about TiO2 nano particles. The particles on focus entailed those that had been suspended in ethylene glycol and water – at a ratio of 60:40. Indeed, regression analysis has gained application in contexts such as the turbulent Reynolds number, especially with the aim of establishing the impact of the ratio of the...

متن کامل

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

متن کامل

Numerical simulation of nanofluids flow and heat transfer through isosceles triangular channels

Nanofluids are stable suspensions of nanoparticles in conventional heat transfer fluids (base fluids) that exhibit better thermal characteristics compared to those of the base fluids. It is important to clarify various aspects of nanofluids behavior. In order to identify the thermal and hydrodynamic behavior of nanofluids flowing through non-circular ducts, in the present study the laminar flow...

متن کامل

Lattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus (TECHNICAL NOTE)

Abstract   This study is applied Lattice Boltzmann Method to investigate the natural convection flow utilizing nanofluids in a concentric annulus. A numerical strategy presents for dealing with curved boundaries of second order accuracy for both velocity and temperature fields. The fluid between the cylinders is a water-based nanofluid containing different types of nanoparticles: copper (Cu), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012